期刊简介

               本刊是国际医学物理学组织(ZOMP)的成员——中国医学物理学会会刊,是国内唯一全面涉及医学物理学各分支学科领域、国内外公开发行的专业性学术双月刊。读者对象是各大医院从事医学物理及相关人员、广大从事医学物理学学科研究的教学工作者以及医学物理学、生物物理学、生物工程学、医学和应用物理学等专业的工作者及博士、硕士研究生。                

首页>中国医学物理学杂志
  • 杂志名称:中国医学物理学杂志
  • 主管单位:南方医科大学
  • 主办单位:南方医科大学;中国医学物理学会
  • 国际刊号:1005-202X
  • 国内刊号:44-1351/R
  • 出版周期:双月刊
期刊荣誉:中国科学引文数据库来源期刊期刊收录:国家图书馆馆藏, 万方收录(中), 上海图书馆馆藏, 知网收录(中), 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 维普收录(中)
中国医学物理学杂志2018年第05期

基于卷积神经网络CT/CBCT影像质量自动分析

张俊;朱金汉;庄永东;刘小伟;陈立新

关键词:卷积神经网络, CT, 锥形束CT, 图像质量, 自动分析
摘要:目的:通过独立的程序自动分析数据,可以在减轻影像的质量保证(QA)工作量的同时,尽可能避免操作者主观因素造成的偏差.方法:对Catphan500/503/504/600的CT/CBCT影像按照功能模块进行分类,并通过卷积神经网络(CNN)进行学习,学习后对新输入的CT/CBCT影像可以自动识别并根据功能模块进行分类,继而对相关指标包括影像CT值的线性、调制传递函数以及均匀性等进行自动分析,以便确保临床应用的影像质量达到要求.结果:对于Catphan500扫描的CT图像和Catphan503扫描的CBCT图像,经过CNN自动分类对于功能模块CTP401、CTP404、CTP528都可以正确标记出来,但是CTP486的精确度没有达到100%,即有部分不属于CTP486的模块被错误判断成CTP486.同时均可实现对CT的值线性、调制传递函数以及均匀性3个图像指标进行自动分析.结论:基于CNN能够准确地对CT/CBCT扫描的Catphan图像进行分类,下一步将拓展该方法到其他影像设备的QA体模,以便实现更广泛的自动影像质量保证.