期刊简介
本刊是国际医学物理学组织(ZOMP)的成员——中国医学物理学会会刊,是国内唯一全面涉及医学物理学各分支学科领域、国内外公开发行的专业性学术双月刊。读者对象是各大医院从事医学物理及相关人员、广大从事医学物理学学科研究的教学工作者以及医学物理学、生物物理学、生物工程学、医学和应用物理学等专业的工作者及博士、硕士研究生。
往期目录
-
2000
-
2001
-
2002
-
2003
-
2004
-
2005
-
2006
-
2007
-
2008
-
2009
-
2010
-
2011
-
2012
-
2013
-
2014
-
2015
-
2016
-
2017
-
2018
-
2019
首页>中国医学物理学杂志

- 杂志名称:中国医学物理学杂志
- 主管单位:南方医科大学
- 主办单位:南方医科大学;中国医学物理学会
- 国际刊号:1005-202X
- 国内刊号:44-1351/R
- 出版周期:双月刊
期刊荣誉:中国科学引文数据库来源期刊期刊收录:国家图书馆馆藏, 万方收录(中), 上海图书馆馆藏, 知网收录(中), 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 维普收录(中)
协同训练算法在无创血糖检测中的应用
张迪;陈真诚;梁永波;吴植强;朱健铭;钟婷婷
关键词:糖尿病, 无创血糖检测, 协同训练, 支持向量机
摘要:目的:在无创血糖检测方法的研究中,因无创生理参数相比血糖真值更易于获取,病理数据库中未用血糖真值标记样本的数量远大于有标记的样本,若能将未标记样本应用于传统有监督血糖预测模型的训练中,将有效扩充训练样本集并提高模型的泛化能力.方法:在基于能量代谢守恒法的理论基础上,利用无创生理参数天然的多视图特性,将半监督学习算法应用于无创血糖的预测中,提出一种基于多视图协同训练与支持向量机技术的血糖预测算法.结果:经实验分析,在一定标记率下,基于协同训练的学习算法相比传统的有监督学习算法预测误差更小.说明未标记样本能够有效提升原始模型的泛化能力.结论:协同训练的引入,充分利用了规模较大的未标记样本,提高了模型泛化能力,并减少了血糖样本采集中标记样本的工作量,为今后无创血糖算法的研究提供了新思路.
友情链接